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Abstract. We compare two-dimensional froths obtained by radical tessellation of random planar cuts made
through disordered assemblies of monosize spheres at different packing fractions C from C = 0 to C = 0.64
with two-dimensional stereological cuts obtained through the three-dimensional froths made with the same
packing. We have built numerically the packings using different algorithms. The study of both topological
and metric properties shows significant differences between the two representations.

PACS. 61.43.Bn Structural modeling: serial-addition models, computer simulation – 61.20.Ja Computer
simulation of liquid structure

1 Introduction

In the last decade, scientists have not studied intensively
the geometry of real granular media. Except for some
global quantities like packing fraction [1,2], the study of
such media is difficult. Only indirect measurements using
stereological methods on packings of spheres [3–5] have
been performed previously. A more detailed investigation
is possible when modeling granular media by numerical
packings of spheres. In that context, a new approach,
based on Voronöı or radical analysis was first tested on
2D monosized and polydispersed disk packings [6–8]. Re-
cent papers [9–12] have shown that it is also a good tool
to study the structural properties of sphere assemblies.
We recall that one can associate a froth to any packing
of spheres by Voronöı or radical tessellation [13] and that
one can best study the properties of the packing in the
froth.

The aim of this paper is to compare the topological
and metric properties between the 2D stereological cut
of the 3D Voronöı tessellation of a packing of identical
spheres and the radical tessellation of a 2D cut of the same
packing. Because of the existence of different disk sizes in
the cut, which provide different kinds of cells, we expect
many differences. This study must also be compared with
studies performed on 2D random disk assemblies, both
numerically generated [7] and actual [6,8].
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In Section 2, we define the two kinds of tessellations
used in this paper. We describe also the classical stereolog-
ical parameters which relate a 2D analysis to the 3D real
structure. Then, we present in Section 3 the topological
(face number distribution, average number of neighbors,
and first neighbor correlations) and metric (cell average
perimeter and area) characteristics of the cellular tessel-
lations.

2 Voronöı tessellation and stereological
background

2.1 Tessellation

Finney has generalized the Voronöı tessellation (for exam-
ple [14]) in monosize packings of spheres (or disks) [15].
Tessellation consists in building cells surrounding each
sphere and analyzing the statistical and topological prop-
erties of the cells instead of the geometry of the assemblies
of spheres.

The plane bisecting the line segment joining the cen-
ters of two equal spherical grains limits their influence
zone, and the Voronöı cell of a grain is the smallest convex
polyhedron made with all the bisecting planes. This cell
completely contains the grain and this grain only. Two
grains are (first) neighbors if their cells have one com-
mon face. It is possible to build a complete hierarchy of
neighbors at any packing fraction without ambiguity. The
Voronöı tessellation fills space completely.
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The simplest extension of this tessellation for poly-
disperse assemblies is the radical tessellation [16], the bi-
secting plane being replaced by the radical plane (all the
points in the radical plane have the same tangency length
or power for the two spheres). The definition may seem
somewhat artificial, but many topological features of the
Voronöı tessellation are maintained. With this tessella-
tion, large grains have larger cells than smaller ones, a
way of estimating their relative hindrance.

2.2 Basic knowledge on stereological properties

Stereological methods mainly consist in performing planar
(2D) or linear (1D) random sections (or cuts) in assemblies
of bodies. Provided the assembly is large enough (or if sev-
eral cuts are performed), the average quantities measured
in the cuts may give statistical information on the 3D as-
sembly. In 1953, Smith and Guttmann listed from previous
works some general stereological laws [17]. For instance,
the cut of a disordered 3D packing gives a 2D assembly of
objects with the same packing fraction as that of 3D pack-
ing. Furthermore, simple measurements on a random cut
give the specific surface area of the solid phase in contact
with the porous space. Another quantity of interest is the
mean average tangent diameter 〈H〉 which is proportional
to the probability of sectioning a given convex body and is
related to its mean curvature [18]. For a sphere, 〈H〉 is the
ordinary diameter D, whereas in the case of polyhedra it
can be explicitly calculated from dihedral angles [19,20].

In the case of spherical particles, Weibel [18] and
Underwood [21] developed extensions that give some in-
formation on the size distribution of the intersection of
the spheres with a planar cut. For instance the probabil-
ity distribution (δa) of the diameter d of the disk obtained
through a random planar cut of a monosize sphere packing
of diameter D is

δa(d) =
d

D
√
D2 − d2

for 0 ≤ d ≤ D. (1)

So the mean and variance of the diameters of the section
disks are da = πD/4 and σ2

a = (32 − 3π2)D2/48, which
means that many disks of the cut have a diameter around
da (≈ 0.78D). In fact 66% of the disk diameters are larger
than 0.75D.

2.3 Cut tessellations

We have used different algorithms to build disordered
monosize sphere packings (collective reorganization, ran-
dom deposition) with packing fractions varying from 0 up
to 0.64 [22]. We have previously studied intensively
the topological and metric properties of these
packings [9,12,23]. These studies deal with classical
Voronöı tessellation using bisecting planes between two
spheres. From a 3D structure, we can perform random
planar sections through this froth and check conservation
of the packing fraction and stereological relation (1).

(a)

(b)

Fig. 1. Representation of the different Voronöı tessellations:
(a) radical tessellation of the 2D disk assemblies obtained from
the cut of the 3D sphere packing with 650 disks (2D froth);
(b) 2D planar cut of the polyhedra obtained with the clas-
sical Voronöı tessellation of the 3D sphere packing with 985
polygons (2D cut).

Two tessellations are considered:

1) a 2D cut of the 3D Voronöı polyhedral froth which
represents a peculiar 2D radical froth [24,25] composed
of a series of adjacent polygons (the 2D cut);

2) the 2D radical tessellation of the disks (of various radii)
which are the cut of the spheres of the packing (the 2D
froth).

Two neighboring spheres may survive as neighboring disks
in the cut. In that case, their radical axis is the intersec-
tion of the Voronöı plane with the cut. Thus several edges
(and polygons) are identical in the two tessellations. How-
ever, some spheres are not intersected by the section plane.
They correspond to cells without a circle in their midst in
the 2D cut (Fig. 1). Thus, there are some differences in
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the two tessellations, which are emphasized if the packing
fraction decreases. We will now discuss these differences.

3 Results

We obtain results from a series of ten random sections
through disordered packings made of 16000 spheres so the
statistical study of the 2D tessellations is carried out on
about 8000 disks or polygons. Figure 1 presents an ex-
ample of the two tessellations obtained for the same cut
plane, on an assembly with packing fraction C = 0.4. The
2D froth is made with 650 intersected spheres (a) and the
2D cut with 985 polygons obtained by the intersection of
the 985 polyhedra with the plane (b). We can see empty
cells in the second case. Measurements on ten random sec-
tions of the packing of Figure 1 show that the percentage
of unoccupied cells is equal to 34%; this is in agreement
with the estimated ratio D/ 〈H〉 where 〈H〉 is calculated
assuming that cells are on average not too far from regular
polyhedra. The presence of empty cells in the 2D cut gen-
erates a larger distribution of sides n of the cells because
some of them, resulting from the section of a polyhedron
in the vicinity of a vertex, have few sides. This is true for
any packing fraction.

3.1 Topological measurements

The widening of the cell size distribution for the 2D cut
can be seen more precisely in Figure 2a. The two tessel-
lations verify the basic 2D topological law which gives a
mean number of sides 〈n〉 of a 2D tessellation equal to 6,
but the dispersion µ2 =

〈
n2
〉
− 〈n〉2 is very different (2.3

for the 2D cut and 0.8 for the 2D froth).
In random 2D froths, the average number of sidesm(n)

of the first neighbors of a cell with n edges is well fitted
by the Aboav-Weaire’s law [26,27]:

m(n) = 〈n〉 − a+
〈n〉 a+ µ2

n
, (2)

where a is a parameter that depends on the froth and
〈n〉 = 6. Figure 2b shows that this law is also rather well
obeyed in the two tessellations. Indeed, the variation of
n m(n) versus n is linear; only the slopes are different- for
all analyzed packing fractions: the slope of the 2D cut is
5.4± 0.1 while that of the 2D froth is 4.7± 0.1. For com-
parison, we have made the same measurements on random
2D assemblies of disks with the same packing fractions and
the same size distributions as that for the disks of the 2D
froth (obtained from Eq. (1)). The two distributions p(n)
are close to one another as shown in Figure 2a, and the
variations of n m(n) versus n are practically the same.
This result confirms the randomness of the disk assem-
blies obtained from our three-dimensional packing.
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Fig. 2. Topological measurements: (a) distribution of the num-
ber of sides of the cell assemblies with a packing fraction
C = 0.4 of the three kinds of tessellations; (b) Aboav-Weaire’s
law for the2D cut and 2D froth tessellations.

3.2 Metric measurements

Lewis’ law and Desch’s law respectively predict linear vari-
ations for the average area A(n) and the perimeter L(n)
of the cells versus their number of sides n. As illustrated
in Figure 3, these laws do not hold in either the 2D froths,
or the 2D cuts. The non-linearity is less strong, but is still
evident, in more dilute packings (as long as C > 0.4),
because at a high packing fraction, the size of a polygon
depends strongly on the size of the disk inside it. So the
variations of A(n) and L(n) with n depend on the size dis-
tribution of the disks, as noted by Annic et al. [7]. Again,
we have verified that the variations of A(n) and L(n) for
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Fig. 3. Metric measurements (in radius unity) of the three
kinds of tessellation. (a) Distribution of the perimeters of the
cell versus the number of sides of the cell assemblies with a
packing fraction C = 0.64. (b) Distribution of the areas of the
cell versus the number of sides of the cell assemblies with a
packing fraction C = 0.64.

2D froths are close to that for random assemblies of disks
with the same distribution (Fig. 3).

4 Conclusion

The comparison between the two-dimensional froths (2D
froth) obtained by radical tessellation of random pla-
nar cuts made through disordered assemblies of monosize
spheres and the 2D stereological cuts (2D cut) obtained
through the three-dimensional froths made with the same
packing gives interesting results. Some properties are valid
in the two cases (especially Aboav-Weaire’s law) but oth-
ers differ greatly (metric properties, distribution of sides
of polygons). The next two steps will be, first to cor-
relate two-dimensional and three-dimensional properties,

and second to extend our analysis to ordered structures
or slightly perturbed crystalline structures for which we
have previously studied the 3D Voronöı tessellation [28].
We have done some preliminary studies for this point but
many random cuts are needed to obtain good statistics.
Another approach is the analysis of the disappearance of
the empty cells from the 2D cut in order to obtain the 2D
froth by a series of topological transformations.

We thank J. Vallance for a critical reading of the manuscript
and one referee for many interesting suggestions.
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